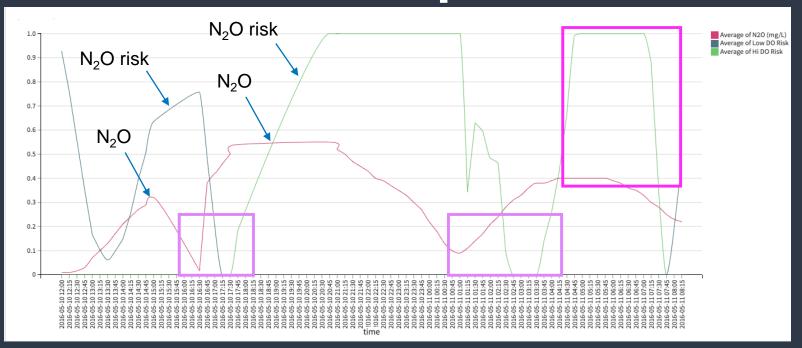


N20Risk DSS Case Studies



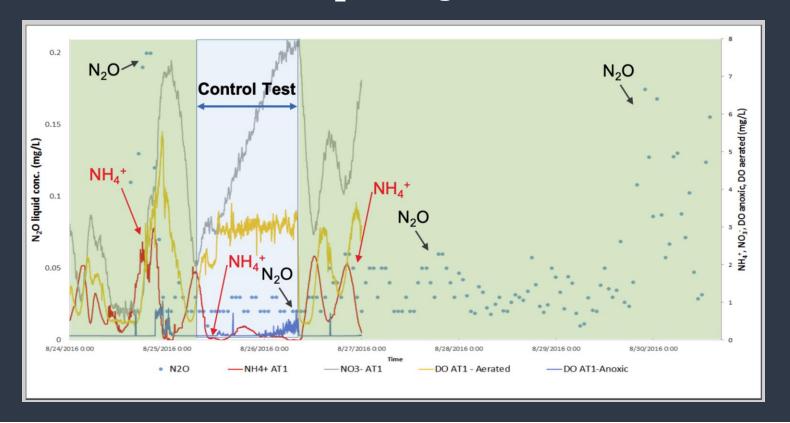
Proven Approach:

Use N2ORisk DSS outputs to examine risk of N₂O emissions versus N₂O and process data to identify mitigation strategies

N2ORisk DSS Outputs

 N_2O Risk and measured N_2O trend closely, so if we eliminate risk peaks by better controlling DO (move to low risk) during NH_4^+ peaks, we eliminate N_2O

Case Study: Eindhoven RWZI



- Eindhoven, NL
- Water Utility: Waterboard De Dommel (NL)
- Overall WWTP GHG reduction: 40%
- Potential Savings: \$400,000*
- Treatment Plant Capacity: 750,000 PE
- Treatment Plant Configuration: Modified-UCT, carrousel
- Methods: $N_2ORisk\ DSS$, process model, and measurements

^{*}Savings over a 20-year period compared to purchasing carbon offsets

Eindhoven WWTP N₂O Mitigation Control Test

Case Study: Eindhoven RWZI

Additional Process Benefits from N2ORisk DSS:

- Lower ammonia (NH₄+) peaks
- No net increase in grid energy consumption
- Nitrate increased, but not significantly above current levels and can be fine tuned
- 90% reduction in N₂O

Case Study: Land van Cuijk RWZI

- Overall WWTP GHG reduction: 70%
- Potential Savings: \$600,000*
- Treatment Plant Capacity: 175,000 PE
- Treatment Plant Configuration: Modified-UCT, carrousel
- Methods: N2ORisk DSS and measurements

^{*}Savings over a 20-year period compared to purchasing carbon offsets

Land van Cuijk WWTP N₂O Mitigation Control Test

Case Study: Land van Cuijk RWZI

Additional Process Benefits from N2ORisk DSS:

- Improved nitrification (lower ammonia peaks)
- Improved denitrification (lower nitrate)
- Improved biological phosphorus removal (from better DO control)
- Net reduction in grid-energy consumption
- 85% reduction in N₂O

Conclusions

In each case the N2ORisk DSS has proven to be able to reduce overall GHG missions by large percentages with virtually no capital investments. A value bomb for achieving net zero emissions.

In each case the *N2ORisk DSS* has proven to improve process efficiency by stabilizing DO and ammonia, making compliance easier, and reducing operator headaches.

Now coupling the knowledge-based AI with machine learning process benefits are only anticipated to increase

